

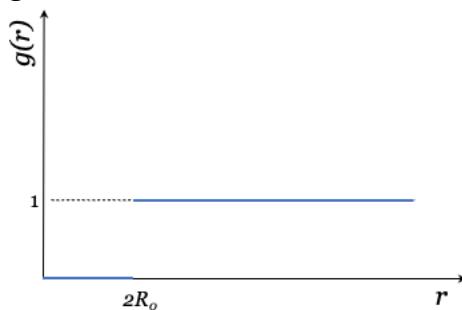
Week 9

Amorphous structures I: Pair distribution function and glasses

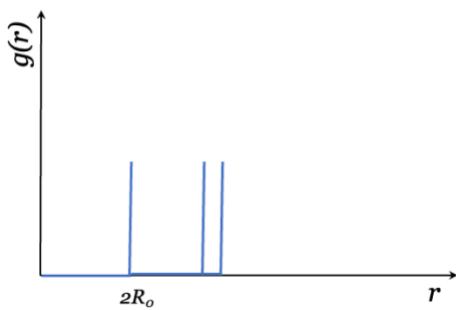
Exercise 1

Answer these questions by true or false:

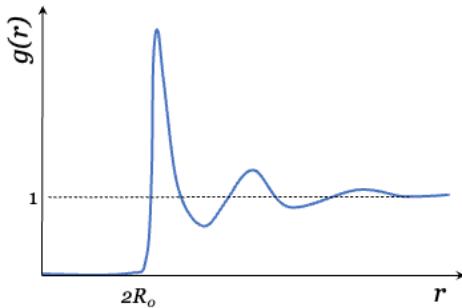
1. If order in a material is more pronounced, the correlation length will be longer
True/false
2. Short-range order spans over a few atomic distances only
True/false
3. Amorphous liquids melt over a range of temperatures
True/false
4. A glass is always transparent
True/false

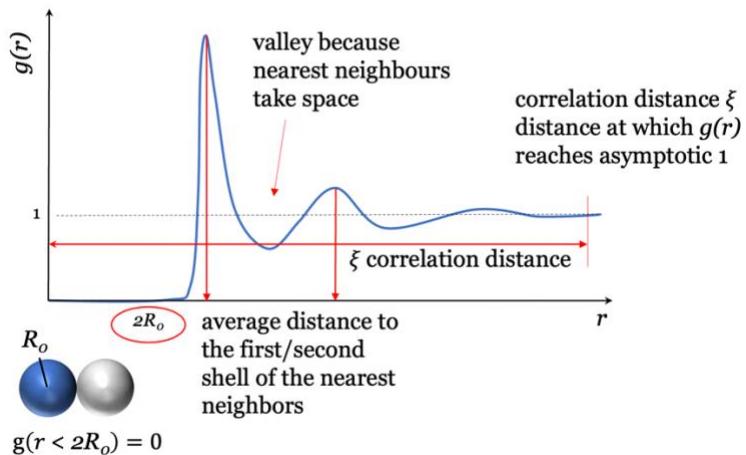

Exercise 2:

Select the correct answer(s) (more than one answer can be correct)


1. The structure factor in scattering/diffraction...
 - a. Describes the scattering of the interaction of all atoms in a unit cell in crystallography
 - b. Describes the interaction between atoms in glasses
 - c. Only exists for crystalline material
2. What happens if you add a network modifier to a silica glass?
 - a. **The correlation distance decreases**
 - b. The correlation distance remains the same
 - c. The correlation distance increases
 - d. The viscosity at the same temperature increases
 - e. The glass transition temperature is unchanged
Glass transition temperature decreases
3. What happens if you add a network modifier to a borate glass?
 - a. The correlation distance decreases
 - b. The correlation distance remains the same
 - c. **The correlation distance increases**
 - d. **The viscosity at the same temperature increases**
 - e. The glass transition temperature is unchanged
Glass transition temperature increases

Exercise 3: Pair distribution function
Sketch a typical pair distribution function for


a) A gas


b) A crystalline material

c) A glass

d) Label the relevant points and axes (including units) in the PDF of a glass

The unit of r is Å (or nm, m), $g(r)$ is unitless

e) How does the PDF in c) change if you heat or cool the material?
 With lowering temperature material densifies, in particular if it solidifies, the neighboring atoms/molecules will move closer, with higher temperature there is more thermal energy, thus Brownian movement, the peaks will get broader. If there is a melting temperature crossed and a crystalline to liquid transition happens, the PDF will accordingly change drastically.

Exercise 4: Give two examples of application of amorphous materials, and describe the relevant property.

type of amorphous solid	representative material	application	special properties
oxide glass	$(\text{SiO}_2)_{0.8}(\text{Na}_2\text{O})_{0.2}$ $(\text{SiO}_2)_{0.9}(\text{GeO}_2)_{0.1}$	window glass fibre-optic	transparency formable purity, ultratransparency, formable
organic polymer	polystyrene, PMMA	structural materials, plastics shatter proof glass	light weight, ease of processing shock resistance
chalcogenide glass	Se, As_2Se_3 Ge-Sb-Te	copiers and laser printers memories	photoconductivity phase change
amorphous semiconductor	$\text{Si}_{0.9}\text{H}_{0.1}$	solar cells, copiers, flat-panel displays	photovoltaic optical properties, large-area thin films, semiconducting properties
metallic glass	$\text{Fe}_{0.8}\text{B}_{0.2}$ $\text{Mg}_{56}\text{Zn}_{35}\text{Ca}_5$ $\text{Zr}_{58}\text{Cu}_{15.6}\text{Ni}_{12.8}\text{Al}_{10.3}\text{Nb}_{2.8}$	transformer cores Bone implants Sports, anti-wear	ferromagnetism, low power loss dissolves in body elasticity, resistance, corrosion
ionic glasses (salts)	Esomeprazole	Pharmaceuticals	Bioavailability (soluble)

Exercise 5: What influences the glass transition temperature of amorphous materials?

The cooling rate, network modifiers (for mineral glasses), plasticizers → example of water in case of pasta or chewing gum